Biotechnologie Industrie
Le guide pratique de la science des surfaces (2025)

45e15f51706b4e59ce9858dee08e05b3?s=32&d=mm&r=g Écrit par Dr Fabio Lisi 45e15f51706b4e59ce9858dee08e05b3?s=32&d=mm&r=g | 45e15f51706b4e59ce9858dee08e05b3?s=32&d=mm&r=g Évalué par Dr Alidad Amirfazli 45e15f51706b4e59ce9858dee08e05b3?s=32&d=mm&r=g |

This is a practical guide to Surface Science for researchers working in the Biotechnology Industry.

Dans ce tout nouveau guide, vous apprendrez tout sur :

  • Crucial surface science principles
  • The significance of surface science measurements for the Biotechnology industry
  • Normes et directives ASTM applicables

Plongeons dans le vif du sujet.

Biotechnology

Chapitre 1 : Introduction

In the biotech industry, we measure contact angle, surface energy, and surface tension to evaluate the wettability and surface properties of materials. These measurements significantly impact various applications, including drug delivery systems, biomaterials, tissue engineering, and diagnostic devices. By understanding the interfacial behavior and surface characteristics, we can optimize the performance, reliability, and biocompatibility of biotech products.



Biotechnology

We use the important surface properties below to understand the behavior of Biotechnology products and improve their quality.

Chapitre 2 : Mesure de l’angle de contact

L’angle de contact quantifie la mouillabilité d’une surface en représentant l’angle entre la surface d’un liquide et une surface solide.
Dropletlab Research
L’exemple d’image est tiré du tensiomètre Droplet Lab.
Droplet Lab propose à la fois les méthodes Young-Laplace et Polynomiale dans notre tensiomètre.

Young – Méthode Laplace

Méthode polynomiale

Angle de contact dynamique

Idéalement, lorsque nous plaçons une goutte sur une surface solide, il existe un angle unique entre le liquide et la surface solide. Nous pouvons calculer la valeur de cet angle de contact idéal (ce qu’on appelle l’angle de contact de Young) à l’aide de l’équation de Young. En pratique, en raison de la géométrie de surface, de la rugosité, de l’hétérogénéité, de la contamination et de la déformation, la valeur de l’angle de contact sur une surface n’est pas nécessairement unique mais se situe dans une plage. Nous appelons les limites supérieure et inférieure de cette plage l’angle de contact qui avance et l’angle de contact qui s’éloigne, respectivement. Les valeurs des angles d’avancement et de recul des angles de contact pour une surface solide sont également très sensibles. Ils peuvent être affectés par de nombreux paramètres, tels que la température, l’humidité, l’homogénéité et la contamination infime de la surface et du liquide. Par exemple, les angles de contact d’avancement et de recul d’une surface peuvent différer à différents endroits.

Angle de contact dynamique par rapport à l’angle de contact statique

Les surfaces et les revêtements pratiques présentent naturellement une hystérésis d’angle de contact, indiquant une gamme de valeurs d’équilibre. Lorsque nous mesurons les angles de contact statiques, nous obtenons une seule valeur dans cette plage. S’appuyer uniquement sur des mesures statiques pose des problèmes, tels qu’une mauvaise répétabilité et une évaluation incomplète de la surface en ce qui concerne l’adhérence, la propreté, la rugosité et l’homogénéité.

Dans les applications pratiques, nous devons comprendre la facilité d’étalement du liquide (angle d’avancement) et la facilité d’évacuation (angle de retrait) d’une surface, comme dans la peinture et le nettoyage. La mesure des angles d’avancement et de recul offre une vue holistique de l’interaction liquide-solide, contrairement aux mesures statiques, qui produisent une valeur arbitraire dans la plage.

Ces informations sont cruciales pour les surfaces du monde réel avec des variations, une rugosité et une dynamique, aidant des industries telles que les cosmétiques, la science des matériaux et la biotechnologie à concevoir des surfaces efficaces et à optimiser les processus.

Découvrez comment la mesure de l’angle de contact est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’angle de contact, lisez notre mesure de l’angle de contact : le guide définitif

Chapitre 3 : Mesure de la tension superficielle

Cette propriété mesure la force qui agit à la surface d’un liquide, dans le but de minimiser sa surface.

Surface Tension Measurement
L’exemple d’image est tiré du tensiomètre Droplet Lab

Tension superficielle dynamique

La tension superficielle dynamique diffère de la tension superficielle statique, qui fait référence à l’énergie de surface par unité de surface (ou à la force agissant par unité de longueur le long du bord d’une surface liquide).

La tension superficielle statique caractérise l’état d’équilibre de l’interface liquide, tandis que la tension superficielle dynamique tient compte de la cinétique des changements à l’interface. Ces changements peuvent impliquer la présence de tensioactifs, d’additifs ou de variations de température, de pression et de composition à l’interface.

Quand utiliser la mesure dynamique de la tension superficielle

La tension superficielle dynamique est essentielle pour les processus qui impliquent des changements rapides à l’interface liquide-gaz ou liquide-liquide, tels que la formation de gouttelettes et de bulles ou la coalescence (changement de surface), le comportement des mousses et le séchage des peintures (changement de composition, par exemple, évaporation du solvant). Nous le mesurons en analysant la forme d’une gouttelette suspendue au fil du temps.

La tension superficielle dynamique s’applique à diverses industries, notamment les cosmétiques, les revêtements, les produits pharmaceutiques, la peinture, l’alimentation et les boissons, ainsi que les processus industriels, où la compréhension et le contrôle du comportement des interfaces liquides sont essentiels pour la qualité du produit et l’efficacité des processus.

Apprenez comment la mesure de la tension superficielle est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’énergie de surface, lisez notre mesure de la tension superficielle : le guide définitif

Chapitre 4 : Mesure de l’énergie de surface

L’énergie de surface fait référence à l’énergie nécessaire pour créer une unité de surface d’une nouvelle surface.
231
L’exemple d’image est tiré du tensiomètre Droplet Lab

Découvrez comment la mesure de l’énergie de surface est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’énergie de surface, lisez notre mesure de l’énergie de surface : le guide définitif

Chapitre 5 : Mesure de l’angle de glissement

L’angle de glissement mesure l’angle auquel un film liquide glisse sur une surface solide. Il est couramment utilisé pour évaluer la résistance au glissement d’une surface.

sliding angle 1
L’exemple d’image est tiré du tensiomètre Droplet Lab

Apprenez comment la mesure de l’angle de glissement est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’angle de glissement, lisez notre Mesure de l’angle de glissement : le guide définitif

Chapitre 6 : Applications dans le monde réel

Within the Biotechnology industry, several case studies exemplify the advantages of conducting surface property measurements.

The Dance of Dissolved Oxygen Sensors in Fermentation

Glycolipid biosurfactants from yeast represent a sustainable innovation in chemical production. Various industries, from food to cosmetics, rely on these surfactants. Crucially, dissolved oxygen plays a key role in their synthesis. It provides microorganisms with sufficient oxygen and creates the ideal environment for proper growth. Therefore, membranes that monitor dissolved oxygen levels must achieve the right balance: hydrophobic enough to repel cell debris but not so hydrophobic that they trap air bubbles. Researchers use tools like the tensiometer developed by Droplet Lab to assess the surface properties of these membranes and the fermentation solution, ensuring a seamless and precise production process.

Biotechnology
Biotechnology
Creating Life with Surface Coatings

Medical implants, scaffolds, and biosensors are transforming our lives and becoming everyday reality. Understanding how different biomaterial surfaces interact with water, either attracting (hydrophilic) or repelling (hydrophobic) it, is crucial. This knowledge directly impacts everything from cell adhesion to tissue regeneration. For example, by carefully adjusting the surface energy and roughness of a substrate, we can significantly enhance cell growth. Surface tension plays a key role in fabricating hybrid materials. We can combine 3D printed polymers with cell-laden hydrogels to create fully biocompatible, 3D structures of living tissues. This innovative approach utilizes surface-wetting forces to suspend liquid films across the openings of a mesh, which can then be converted into a solid coating or hydrogel.

Nano Magic: Targeting Treatment

It’s easy to dismiss nanoparticles as insignificant due to their small size, but looks can be deceiving. Despite their tiny size, they’re revolutionizing the biotech industry with their remarkable versatility. Their large surface area to volume ratio, coupled with adjustable surface chemistry, makes them ideal for drug delivery systems. Take glaucoma treatment, for example. Both the medication itself and its delivery method play crucial roles in its effectiveness. By analyzing contact angles, researchers can precisely control how drug-loaded nanoparticles interact with the eye’s surface. This leads to optimized formulations that not only improve patient outcomes but also ensure sustained and efficient drug delivery.

Biotechnology
A man in a white jacket is working
Bioprocess Purification: Where Precision Meets Efficacy

Modern bioprocesses offer fascinating journeys, transforming raw materials into potentially life-saving drugs or vital enzymes. However, the initial stages often present inclusion bodies or crystals. These bioprocesses create a complex liquid phase, a melting pot of diverse bioparticles ranging from cell debris and whole cells to particulate biocatalysts and by-products. Separating these valuable entities from the surrounding other particles is no easy feat, with the contact angle of each bioparticle playing a crucial role in this purification process.
Surface properties take center stage here, as a particle’s surface dictates its interactions with its environment. This is where our tools come into play, providing researchers with the detailed insights needed to optimize the purification process. For example, drying and re-dispersing these particles present significant challenges. Without understanding the capillary forces at play – forces directly influenced by surface tension – particles can easily aggregate or films can crack. By providing precise measurements, we empower researchers to avoid these pitfalls and achieve the highest possible product quality.

Nous sommes vos partenaires dans la résolution de votre activité et de votre Défis

Si vous êtes intéressé par la mise en œuvre de ces applications ou de toute autre application, veuillez nous contacter.

Chapitre 7 : Normes et lignes directrices

In an industry where precision reigns supreme, where do Biotechnology manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.

astm
ASTM D7541-11(2022)- Standard Practice for Estimating Critical Surface Tensions

This standard is applicable to measure the critical surface tension of substrates, primers, and other coatings. The measurements are based on the observation of wetting and dewetting of different liquids applied to the targeted surface.

 

ASTM D7334-08(2022) – Standard Practice for Surface Wettability of Coatings, Substrates, and Pigments by Advancing Contact Angle Measurement

It provides a procedure for the characterization of the wettability of surfaces by applying contact angle measurements.

 

iso logo
ISO 9101:1987 Surface active agents

Determination of interfacial tension — Drop volume method. It provides a method to measure the interfacial tension between two liquids. Interfacial tension is essential for formulating stable emulsions and suspensions of drugs and other bioactive compounds, as well as affecting cell culture processes, especially in bioreactor systems.

 

ISO 17025:2005—Testing and calibration laboratories

 

The purpose of this standard is to establish broad criteria that ensure the quality of measurement processes, resulting in precise and reliable readings. It also provides general guidelines for the appropriate training of personnel involved in measurements. It should be noted that this standard does not specify specific acceptable tolerances. Instead, its primary focus is to assist laboratories in developing and implementing quality processes by emphasizing critical factors necessary for accurate measurements and promoting effective training practices for personnel involved in taking measurements.

Maintenant, c’est à votre tour

Nous espérons que ce guide vous a montré comment appliquer la science des surfaces dans l’industrie cosmétique.

Maintenant, nous aimerions vous céder la parole :

Quoi qu’il en soit, faites-le nous savoir en laissant un commentaire ci-dessous dès maintenant

Laisser une réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont marqués *

Télécharger l’expérience