Revu: 28
This is a practical guide to Surface Science for researchers working in the Oil & Gas Industry.
Dans ce tout nouveau guide, vous apprendrez tout sur :
Plongeons dans le vif du sujet.
The oil and gas industry relies heavily on precise surface property measurements. They actively measure properties like surface tension, sliding angle, surface energy, and contact angle to optimize various applications, including
We use the important surface properties below to understand the behavior of Oil & Gas products and improve their quality.
Young – Méthode Laplace
Méthode polynomiale
Angle de contact dynamique
Idéalement, lorsque nous plaçons une goutte sur une surface solide, il existe un angle unique entre le liquide et la surface solide. Nous pouvons calculer la valeur de cet angle de contact idéal (ce qu’on appelle l’angle de contact de Young) à l’aide de l’équation de Young. En pratique, en raison de la géométrie de surface, de la rugosité, de l’hétérogénéité, de la contamination et de la déformation, la valeur de l’angle de contact sur une surface n’est pas nécessairement unique mais se situe dans une plage. Nous appelons les limites supérieure et inférieure de cette plage l’angle de contact qui avance et l’angle de contact qui s’éloigne, respectivement. Les valeurs des angles d’avancement et de recul des angles de contact pour une surface solide sont également très sensibles. Ils peuvent être affectés par de nombreux paramètres, tels que la température, l’humidité, l’homogénéité et la contamination infime de la surface et du liquide. Par exemple, les angles de contact d’avancement et de recul d’une surface peuvent différer à différents endroits.
Les surfaces et les revêtements pratiques présentent naturellement une hystérésis d’angle de contact, indiquant une gamme de valeurs d’équilibre. Lorsque nous mesurons les angles de contact statiques, nous obtenons une seule valeur dans cette plage. S’appuyer uniquement sur des mesures statiques pose des problèmes, tels qu’une mauvaise répétabilité et une évaluation incomplète de la surface en ce qui concerne l’adhérence, la propreté, la rugosité et l’homogénéité.
Dans les applications pratiques, nous devons comprendre la facilité d’étalement du liquide (angle d’avancement) et la facilité d’évacuation (angle de retrait) d’une surface, comme dans la peinture et le nettoyage. La mesure des angles d’avancement et de recul offre une vue holistique de l’interaction liquide-solide, contrairement aux mesures statiques, qui produisent une valeur arbitraire dans la plage.
Ces informations sont cruciales pour les surfaces du monde réel avec des variations, une rugosité et une dynamique, aidant des industries telles que les cosmétiques, la science des matériaux et la biotechnologie à concevoir des surfaces efficaces et à optimiser les processus.
Découvrez comment la mesure de l’angle de contact est effectuée sur notre tensiomètre
Pour une compréhension plus complète de la mesure de l’angle de contact, lisez notre mesure de l’angle de contact : le guide définitif
Cette propriété mesure la force qui agit à la surface d’un liquide, dans le but de minimiser sa surface.
Tension superficielle dynamique
La tension superficielle dynamique diffère de la tension superficielle statique, qui fait référence à l’énergie de surface par unité de surface (ou à la force agissant par unité de longueur le long du bord d’une surface liquide).
La tension superficielle statique caractérise l’état d’équilibre de l’interface liquide, tandis que la tension superficielle dynamique tient compte de la cinétique des changements à l’interface. Ces changements peuvent impliquer la présence de tensioactifs, d’additifs ou de variations de température, de pression et de composition à l’interface.
La tension superficielle dynamique est essentielle pour les processus qui impliquent des changements rapides à l’interface liquide-gaz ou liquide-liquide, tels que la formation de gouttelettes et de bulles ou la coalescence (changement de surface), le comportement des mousses et le séchage des peintures (changement de composition, par exemple, évaporation du solvant). Nous le mesurons en analysant la forme d’une gouttelette suspendue au fil du temps.
La tension superficielle dynamique s’applique à diverses industries, notamment les cosmétiques, les revêtements, les produits pharmaceutiques, la peinture, l’alimentation et les boissons, ainsi que les processus industriels, où la compréhension et le contrôle du comportement des interfaces liquides sont essentiels pour la qualité du produit et l’efficacité des processus.
Apprenez comment la mesure de la tension superficielle est effectuée sur notre tensiomètre
Pour une compréhension plus complète de la mesure de l’énergie de surface, lisez notre mesure de la tension superficielle : le guide définitif
Découvrez comment la mesure de l’énergie de surface est effectuée sur notre tensiomètre
Pour une compréhension plus complète de la mesure de l’énergie de surface, lisez notre mesure de l’énergie de surface : le guide définitif
L’angle de glissement mesure l’angle auquel un film liquide glisse sur une surface solide. Il est couramment utilisé pour évaluer la résistance au glissement d’une surface.
Apprenez comment la mesure de l’angle de glissement est effectuée sur notre tensiomètre
Pour une compréhension plus complète de la mesure de l’angle de glissement, lisez notre Mesure de l’angle de glissement : le guide définitif
Within the Oil & Gas industry, several case studies exemplify the advantages of conducting surface property measurements.
Offshore oil platforms face a challenge: their production stream contains significant water that forms a stubborn emulsion with the crude oil due to high surface tension. To break this unwanted bond, engineers actively lower surface tension using carefully chosen surfactants. By measuring contact angle and surface energy, they precisely select the most effective chemicals. This targeted approach improves emulsion destabilization, leading to more efficient water-oil separation and significantly reduced energy consumption during processing.
In a mature oil reservoir, researchers actively employ Enhanced Oil Recovery (EOR) methods to squeeze out more oil. To assess the reservoir rock’s wettability, they precisely measure contact angles. Their discovery of mixed wettability characteristics in the rock leads them to utilize surface energy measurements to design a more effective EOR strategy. By altering the contact angle with specific surfactants or polymers, they modify the interaction between the reservoir rock and injected fluids, ultimately increasing oil recovery.
Les pipelines offshore sont confrontés à la colère de l’eau de mer hostile, ce qui entraîne de la corrosion et une durée de vie réduite. Pour lutter contre ce phénomène, les ingénieurs appliquent activement des revêtements hydrophobes sur les surfaces des pipelines. Les mesures de l’angle de glissement jouent un rôle crucial dans l’évaluation des performances de ces revêtements. En atteignant un faible angle de glissement, les revêtements repoussent efficacement l’eau, réduisant considérablement le risque de corrosion et prolongeant la durée de vie du pipeline. Cette approche proactive permet également de réduire les coûts de maintenance à long terme.
Surface property measurements actively unlock the secrets of reservoir rocks and their fluids. By analyzing these properties, engineers precisely determine the best drilling and production techniques to maximize efficiency and success. Furthermore, surface property measurements play a crucial role in optimizing the drilling mud and cement used to seal the wellbore, ensuring safe and reliable operations.
In enhanced oil recovery techniques like surfactant flooding, engineers actively utilize surface property measurements to optimize the process. They reduce surface tension between oil and water using surfactants, allowing for easier oil recovery. These measurements help them determine the ideal surfactant concentration and continuously monitor the effectiveness of the surfactant flooding process.
Si vous êtes intéressé par la mise en œuvre de ces applications ou de toute autre application, veuillez nous contacter.
In an industry where precision reigns supreme, where do Oil & Gas manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
Terminology and general principles. General terms, definitions, and general principles for wettability can be utilized with the help of this standard.
ASTM D7334 (advancing angle)
Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement.
This document specifies general terms and definitions for wettability. Some general principles are described in Annex A. This document is intended to be used in conjunction with ISO 4618.
Nous espérons que ce guide vous a montré comment appliquer la science des surfaces dans l’industrie cosmétique.
Maintenant, nous aimerions vous céder la parole :
Droplet Lab a été fondé en 2016 par le Dr Alidad Amirfazli, membre du corps professoral de l’Université York, et deux de ses chercheurs, le Dr Huanchen Chen et le Dr Jesus L. Muros-Cobos.
Dropletlab © 2024 Tous droits réservés.