Semi-conducteurs Industrie
Le guide pratique de la science des surfaces (2025)

529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g Écrit par Dr Amit Pratap Singh 529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g | 529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g Évalué par Dr Alidad Amirfazli 529757429dc85e51d966438130e7ca4b?s=32&d=mm&r=g |

This is a practical guide to Surface Science for researchers working in the Semiconductors Industry.

Dans ce tout nouveau guide, vous apprendrez tout sur :

  • Crucial surface science principles
  • The significance of surface science measurements for the Semiconductors industry
  • Normes et directives ASTM applicables

Plongeons dans le vif du sujet.

Semiconductors

Chapitre 1 : Introduction

Semiconductor manufacturers face the constant challenge of maximizing performance and refining processes. Often underestimated, surface properties play a crucial role in optimizing these performances. By measuring these properties, we gain valuable insights into material properties, processes, and device performance, ultimately leading to:

 

Semiconductors

We use the important surface properties below to understand the behavior of Semiconductors products and improve their quality.

Chapitre 2 : Mesure de l’angle de contact

L’angle de contact quantifie la mouillabilité d’une surface en représentant l’angle entre la surface d’un liquide et une surface solide.
Dropletlab Research
L’exemple d’image est tiré du tensiomètre Droplet Lab.
Droplet Lab propose à la fois les méthodes Young-Laplace et Polynomiale dans notre tensiomètre.

Young – Méthode Laplace

Méthode polynomiale

Angle de contact dynamique

Idéalement, lorsque nous plaçons une goutte sur une surface solide, il existe un angle unique entre le liquide et la surface solide. Nous pouvons calculer la valeur de cet angle de contact idéal (ce qu’on appelle l’angle de contact de Young) à l’aide de l’équation de Young. En pratique, en raison de la géométrie de surface, de la rugosité, de l’hétérogénéité, de la contamination et de la déformation, la valeur de l’angle de contact sur une surface n’est pas nécessairement unique mais se situe dans une plage. Nous appelons les limites supérieure et inférieure de cette plage l’angle de contact qui avance et l’angle de contact qui s’éloigne, respectivement. Les valeurs des angles d’avancement et de recul des angles de contact pour une surface solide sont également très sensibles. Ils peuvent être affectés par de nombreux paramètres, tels que la température, l’humidité, l’homogénéité et la contamination infime de la surface et du liquide. Par exemple, les angles de contact d’avancement et de recul d’une surface peuvent différer à différents endroits.

Angle de contact dynamique par rapport à l’angle de contact statique

Les surfaces et les revêtements pratiques présentent naturellement une hystérésis d’angle de contact, indiquant une gamme de valeurs d’équilibre. Lorsque nous mesurons les angles de contact statiques, nous obtenons une seule valeur dans cette plage. S’appuyer uniquement sur des mesures statiques pose des problèmes, tels qu’une mauvaise répétabilité et une évaluation incomplète de la surface en ce qui concerne l’adhérence, la propreté, la rugosité et l’homogénéité.

Dans les applications pratiques, nous devons comprendre la facilité d’étalement du liquide (angle d’avancement) et la facilité d’évacuation (angle de retrait) d’une surface, comme dans la peinture et le nettoyage. La mesure des angles d’avancement et de recul offre une vue holistique de l’interaction liquide-solide, contrairement aux mesures statiques, qui produisent une valeur arbitraire dans la plage.

Ces informations sont cruciales pour les surfaces du monde réel avec des variations, une rugosité et une dynamique, aidant des industries telles que les cosmétiques, la science des matériaux et la biotechnologie à concevoir des surfaces efficaces et à optimiser les processus.

Découvrez comment la mesure de l’angle de contact est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’angle de contact, lisez notre mesure de l’angle de contact : le guide définitif

Chapitre 3 : Mesure de la tension superficielle

Cette propriété mesure la force qui agit à la surface d’un liquide, dans le but de minimiser sa surface.

Surface Tension Measurement
L’exemple d’image est tiré du tensiomètre Droplet Lab

Tension superficielle dynamique

La tension superficielle dynamique diffère de la tension superficielle statique, qui fait référence à l’énergie de surface par unité de surface (ou à la force agissant par unité de longueur le long du bord d’une surface liquide).

La tension superficielle statique caractérise l’état d’équilibre de l’interface liquide, tandis que la tension superficielle dynamique tient compte de la cinétique des changements à l’interface. Ces changements peuvent impliquer la présence de tensioactifs, d’additifs ou de variations de température, de pression et de composition à l’interface.

Quand utiliser la mesure dynamique de la tension superficielle

La tension superficielle dynamique est essentielle pour les processus qui impliquent des changements rapides à l’interface liquide-gaz ou liquide-liquide, tels que la formation de gouttelettes et de bulles ou la coalescence (changement de surface), le comportement des mousses et le séchage des peintures (changement de composition, par exemple, évaporation du solvant). Nous le mesurons en analysant la forme d’une gouttelette suspendue au fil du temps.

La tension superficielle dynamique s’applique à diverses industries, notamment les cosmétiques, les revêtements, les produits pharmaceutiques, la peinture, l’alimentation et les boissons, ainsi que les processus industriels, où la compréhension et le contrôle du comportement des interfaces liquides sont essentiels pour la qualité du produit et l’efficacité des processus.

Apprenez comment la mesure de la tension superficielle est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’énergie de surface, lisez notre mesure de la tension superficielle : le guide définitif

Chapitre 4 : Mesure de l’énergie de surface

L’énergie de surface fait référence à l’énergie nécessaire pour créer une unité de surface d’une nouvelle surface.
231
L’exemple d’image est tiré du tensiomètre Droplet Lab

Découvrez comment la mesure de l’énergie de surface est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’énergie de surface, lisez notre mesure de l’énergie de surface : le guide définitif

Chapitre 5 : Mesure de l’angle de glissement

L’angle de glissement mesure l’angle auquel un film liquide glisse sur une surface solide. Il est couramment utilisé pour évaluer la résistance au glissement d’une surface.

sliding angle 1
L’exemple d’image est tiré du tensiomètre Droplet Lab

Apprenez comment la mesure de l’angle de glissement est effectuée sur notre tensiomètre

Pour une compréhension plus complète de la mesure de l’angle de glissement, lisez notre Mesure de l’angle de glissement : le guide définitif

Chapitre 6 : Applications dans le monde réel

Within the Semiconductors industry, several case studies exemplify the advantages of conducting surface property measurements.

Photoresist Adhesion in Lithography

In photolithography, meticulous pattern creation is key to manufacturing complex semiconductor devices. This process relies heavily on the delicate interplay between the photoresist and the substrate. Photoresist adhesion to the substrate acts as a linchpin, directly determining the sharpness and precision of the resulting patterns. To achieve optimal results, manufacturers delve into the surface science of these properties. By examining the substrate’s surface energy and analyzing the contact angle exhibited by the photoresist, they gain valuable insights to fine-tune adjustments.

This refining process enhances adhesion properties, ultimately leading to a seamless pattern transfer. The benefits are manifold, including increased yields, sharper results, and a significant reduction in defects throughout the lithography process.

Semiconductors
Semiconductors
Réduire les résidus d’adhésif dans l’emballage

Chip packaging relies heavily on adhesives to securely bind the delicate semiconductor die to its protective casing. However, a major challenge arises from leftover adhesive residue, which can negatively impact device reliability.

To combat this issue, manufacturers meticulously measure and manage the sliding angle of the packaging material during application. This precise control ensures that the liquid adhesive smoothly glides away, leaving no unwanted residue behind. This optimization delivers two key benefits: firstly, it significantly reduces the risk of electrical shorts or unintended connections, and secondly, it effectively boosts the overall electrical performance of the device.

Managing Receding Meniscus in Immersion Lithography

To achieve successful immersion lithography, meticulous management of the immersion fluid is crucial. A major failure point is the receding meniscus event, which leaves residual liquid behind on the wafer as a thin film or droplets. Ideally, the immersion fluid should be confined near the lens, allowing the wafer to scan smoothly during exposure.

For a semiconductor manufacturer, the meniscus failure mechanism remained a significant hurdle, hindering the successful implementation of immersion lithography. Recognizing the critical role of surface forces in drainage and pattern collapse during lithography, they sought a solution from a laboratory. The scientists, understanding the importance, developed a new fluid formulation with precisely tailored surface tension characteristics that facilitated proper liquid drainage, eliminating the meniscus issue.

Semiconductors

Nous sommes vos partenaires dans la résolution de votre activité et de votre Défis

Si vous êtes intéressé par la mise en œuvre de ces applications ou de toute autre application, veuillez nous contacter.

Chapitre 7 : Normes et lignes directrices

In an industry where precision reigns supreme, where do Semiconductors manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.

astm
ASTM D1331-14: – Standard Test Methods for Surface and Interfacial Tension of Solutions of Paints, Solvents, Solutions of Surface-Active Agents, and Related Materials

In ULSI fabrication the particle contamination on silicon wafer can impact the final yield badly. To suppress particle surfactants can be added. In this regard, D1331-14 covers the guidelines to evaluate the effectiveness of surface active agents in reducing surface tension. This method also helps in predicting the interactions between liquids and solid surfaces that can be used to establish wetting properties.

ASTM D7490-13(2022): – Standard Test Method for Measurement of the Surface Tension of Solid Coatings, Substrates and Pigments using Contact Angle Measurements

Silicon wafers with hydrophobic surfaces can be bonded at room temperature (RT) with the help of a dip in diluted HF and that becomes possible due to Dispersion van der Waals forces. D7490-13 standard takes the help the concept that total free energy at a surface is the sum of contributions from different intermolecular forces, such as dispersion, polar and hydrogen bonding. This test method provides a procedure to calculate the surface properties like surface tension and its dispersion and polar components of the solid.

 

Maintenant, c’est à votre tour

Nous espérons que ce guide vous a montré comment appliquer la science des surfaces dans l’industrie cosmétique.

Maintenant, nous aimerions vous céder la parole :

Quoi qu’il en soit, faites-le nous savoir en laissant un commentaire ci-dessous dès maintenant

Laisser une réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont marqués *

Télécharger l’expérience